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ABSTRACT

At last year’s SPIE symposium, we reported results of an experiment on structural vibration damping of
an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel
vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB.
Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively,
using single- and multiple-mode shunting.

It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to
control structural vibration induced at higher acoustic excitation levels, and to examine the controllability
and survivability of the bonded PZT transducers at these high levels. The shunting experiment was
performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center
using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was
mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the
panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two
shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz.

We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These
values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps.
During each increment, the frequency response function between accelerometers on the panel and the
acoustic excitation measured by microphones, before and after shunting, were recorded. Good response
reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire
breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well
on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward
lower frequency when the OASPL was increased. Detailed experimental results will be presented.

Keywords: passive, piezoelectric shunting, structural vibration, damping, sound pressure level, acoustic
excitation, PZT transducer, structural modes, mode frequency, panel, progressive wave tube.

1. INTRODUCTION

Many military aircraft experience fatigue problems at several locations. In the case of the F-15 military
aircraft, one area of concern is panel 1082, located on the lower fuselage surface of the aircraft. Cracks
have been found near one end of the lateral former and along chemically milled edges near the LANTIRN
Pod carry-through bulkhead. The fatigue failure is believed to be due to long dwell at high dynamic
loading.

One possible method to reduce this kind of damage is to add damping to the structure near the weak
area. Several damping approaches have been undertaken by Boeing to investigate and remedy the problem.
One approach used visco-elastic materials to increase structural damping'”. Another approach, which will
be reported in this paper, is the passive piezoelectric shunting technique. This damping control approach
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utilizes the piezoelectric properties of transducers made of ferroelectric ceramic materials such as lead-
zirconate-titanate (PZT). The transducer converts the mechanical energy of the vibrating structure to
electrical energy which is then dissipated by Joule heating in the resistor of the external shunt circuit.

Many papers on the subject of the piezoelectric shunting for vibration damping control have been
reported in the literature. A few typical papers are listed in references 2-10. Piezoelectric shunting is
accomplished by connecting a shunt circuit, consisting of an inductor and a resistor, to the two terminals of
a PZT ceramic transducer bonded to the structure. Since the PZT is electrically a capacitive element, in
order to reduce a high structural vibration mode at frequency ®, one has to tune the shunt circuit with the
inductor first so that the parallel reactance of the inductance and the PZT capacitance becomes very large,

or open-circuited, at mode frequency ®. This leaves only the resistor in the shunt circuit. When the shunt
resistor is adjusted to its optimum value, energy from the vibration mode flowing through the resistor can
be dissipated.

At last year’s SPIE symposium, we reported experimental results of structural vibration damping
performed on an F-15 underbelly panel using the piezoelectric shunt-damping approach'”. It was an
aluminum panel with a size of 15.87 in. x 13.68 in. x 0.063 in. Its four edges were bolted onto a
rectangular fixture made from four 1-in.-thick plywood blocks. The panel was slightly curved, retaining
the original curvature of the fuselage near the lower central belly section of the F-15 fighter. The inner
surface of the panel was chem-milled to 60-mil thickness in four areas, resulting in four thinner rectangular
zones. A lateral former ran horizontally through the non-chem-milled area in the middle of the panel.

In the previous tests, panel vibration was excited with an audio speaker. The OASPL at the front of the
panel was about 90 dB. Five 2-in. x 1.5-in. PZT Quickpack!'? transducers bonded on the inner surface of
the panel were used for the shunt-damping experiment. An accelerometer mounted closer to the PZTs in
the upper right-hand zone was used to monitor the vibration signal. illustrates the frequency
response curve measured with the accelerometer when a random white noise signal was applied to the
speaker from an HP spectrum analyzer. It is a replot from Figure 9 of Ref. 10. The solid curve shows the
response before the shunting; the dotted curve, after shunting with a double-mode shunt circuit for mode 1
and mode 2; and the dashed curve, after shunting with the two shunt circuits. There were two high-
amplitude modes on the before-shunting curve in the frequency range of 200-400 Hz. The natural
frequencies of these modes were around 235 and 354 Hz. Using the multiple-mode shunting techniques,
we had successfully reduced peak amplitudes 13.35 dB and 10.72 dB for the first and second modes,
respectively.

It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to
control structural vibration induced at higher acoustic excitation levels. This is particularly important for
the dynamic (or sonic) fatigue problems of fighter aircraft that experience high vibro-acoustic loads from
turbulent flows or from direct flow impingement during high-angle-of-attack maneuvers. It also becomes
important to evaluate the controllability and the survivability of the bonded PZT transducers at these high
vibration levels. The experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA)!?
at the NASA Langley Research Center using the same F-15 underbelly panel mentioned above. Good
vibration reduction was obtained using bonded PZT transducers at acoustic excitation levels up to 148 dB.
Detailed experimental results and observed nonlinear vibration behavior of the panel will be presented.

2. EXPERIMENTAL ARRANGEMENT

The piezoelectric shunting experiment was performed using the TAFA facility at the NASA Langley
Research Center on an F-15 panel, mentioned in the previous section. The TAFA is a progressive wave
tube facility used to simulate the combined high-intensity thermal-vibro-acoustic environment experienced
by high-performance aircraft and spacecraft structures. A photograph of the facility is shown in

During the test, the F-15 panel was subjected to grazing-incidence acoustic excitation. It was mounted
on the mounting plate, which had an open window of 32 in. x 32 in., on one wall of the apparatus test
section. Since the F-15 panel was smaller than the window, we redesigned the support fixture of the panel
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by attaching four wide wooden frames on the four sides of the panel. This allowed the whole panel and the
new frame to cover the window on the TAFA wall. We also modified the depth of the support fixture so
that the front surface of the panel was in the same surface plane with the mounting plate when the panel
was mounted on the TAFA wall. This would allow smooth airflow in the progressive wave tube. Several
monitoring devices were used during the experiment. Two B & K microphones were positioned in the
waveguide close to the leading and trailing edges of the panel. The upstream microphone, Mic 1, was used
as the reference sensor. Five PCB accelerometers, model 353B15, were mounted at different locations on
the panel and the support fixture. hows the back view of the panel with five PZT patch
transducers bonded on it, and the surrounding wooden support fixture. The insert, on the right, shows a
schematic of the locations of the PZT transducers and test instruments

3. EXPERIMENTAL RESULTS

We first ran the TAFA by gradually increasing the airflow in the waveguide to the normal operating
condition without the use of any modulator, which produced an OASPL of about 130 dB. [Figure 4Jshows
the magnitude of the frequency response function between 100 and 400 Hz measured between
accelerometer A1 and microphone Mic 1. Note that all subsequent plots of the frequency response function
are between accelerometer Al and microphone Mic 1. There were several differences between this curve
and the before-shunting curve (solid curve) in First, three new low-frequency modes appeared
below 200 Hz. Second, the peak amplitudes of the modes near 235 Hz and 354 Hz shown on the solid
curve in Figure 1 were already reduced and damped. Third, the peak frequency of the mode at 354 Hz was
also shifted toward lower frequency near 320 Hz. We believed that these changes were associated with the
newly added support fixture. The addition of the fixture for mounting the panel to the larger open window
in the wall of the TAFA test section apparently induced these three low-frequency modes. It increased the
inherent damping of the panel. It also reduced its overall stiffness, which caused frequency lowering, in
particular, at the higher-frequency modes.

Two shunt circuits were used during the shunt-damping experiment. One circuit designed for
controlling the 235 Hz mode was either connected to the PZT transducer A, B, or C individually, or was
connected to them in parallel. Another circuit for controlling the 320 Hz mode was either connected to
PZT transducer D or E individually or was connected to them in parallel.

Shunt Configuration 1. After the OASPL level was increased to 130 dB, we recorded the frequency
response function for the non-shunted condition. We proceeded to perform the shunting experiment by
turning on the first shunt circuit. It was first connected to the transducer C. Our intention was to shunt-
damp the first mode around 235 Hz using a single transducer. After setting the shunt inductance and the
shunt resistance to proper values, we obtained the frequency response function shown in

Several interesting points on the curve are worth mentioning. First, the curve around 235 Hz remained
split, as before shunting. When we tried to decrease the shunt resistance to see whether the valley would
disappear and become plateau-like in shape, the attempt was not successful. This indicated that the panel
had two modes around this frequency. Second, the peak on the right was higher than that on the left. The
response at the dip frequency was reduced about 7 dB, but the mode on the right was reduced less, by only
about 3 dB. Although we could try to balance the two heights by adjusting (decreasing) the shunt
inductance, the dip frequency would shift away from the initial 235 Hz and move toward higher frequency.
Third, the shoulder on the left was widened and moved toward lower frequency. The total amplitude
reduction would have been greater if the panel had not been affected by the inherent structural damping
associated with the support fixture.

Shunt Configuration 2. We next turned on the second shunt circuit while the first shunt circuit
remained on. The second shunt circuit was designed to shunt-damp the second mode around 320 Hz. We
connected it to the terminals of PZT transducer E and conducted the shunting experiment. After some
adjustments to the inductance and the resistance of the second shunt circuit, we obtained the frequency
response function shown in The top of the curve at 320 Hz became a normal flat plateau-like
shape after shunting. The peak amplitude was reduced about 4 dB. Note that the frequency response curve
near 235 Hz was not affected during the operation.

From SPIE Proceedings Vol. 3989, Paper No. 3989-27, 7™ International Symposium on Smart Structures
and Materials, Newport Beach, CA, 5-9 March 2000.



Shunt Configuration 3. We returned again to the first shunt circuit for shunt-damping the mode near
235 Hz only, but this time we connected three PZT transducers A, B, and C in parallel to the shunt circuit.
We first set the OASPL in the TAFA to the same 130dB level as used previously. We then recorded the
frequency response function before shunting. We noticed that the curve near 235 Hz was changed
somewhat from what was observed previously. The amplitudes of the two peaks were not of the same
height; the right-hand peak was much lower. The exact cause of the change was not known. After
adjusting the shunt inductance and resistance, we recorded the frequency response function.
shows the frequency response functions before and after shunting. The average reduction of the response
curve for the modes around 235 Hz was about 8 dB. We also observed a slight increase on the inclined
plateau around 275 Hz. It was believed to be due to spillover of the control.

Shunt Configuration 4. Next, we used two shunt circuits for shunt-damping the modes around 235 Hz
and 320 Hz. The first shunt circuit was connected to PZT transducers A, B, and C in parallel, and the
second shunt circuit was connected to PZT transducers D and E in parallel. The inductance and resistance
of the first shunt circuit were not changed from configuration 3. After adjusting the inductance and
resistance of the second shunt circuit, we measured the frequency response function. Figure 8]shows the
frequency response functions before and after shunting. We observed that the mode near 320 Hz was
reduced by about 5 dB after the activation of the second shunt circuit. A slight change also occurred for the
modes near 235 Hz after shunting. The amplitudes of the modes above 350 Hz were also increased
slightly, due probably to some spillover.

We next turned on two air stream modulators of the TAFA to increase the OASPL, and increased it
from 130 dB in 6-dB steps. After each increment, we measured the frequency response functions before
and after shunting, using the shunt circuits of Shunt Configuration 4. The shunt circuit inductance and
resistance, however, were unchanged; they were maintained at the same values as used before the OASPL
increase. The reason for not changing the shunt circuit parameters was to examine the controllability of the
shunt circuit at high OASPLs. Since the peak frequencies and the mode shapes of the panel change at high
acoustic excitation levels, we want to evaluate whether the shunt circuit with its circuit parameters set at
some predetermined values will still be able to control structural vibration as it can at a low excitation level.

[Figure 9| Figure 11[show the frequency response functions before and after shunting at the OASPL of
136 dB, 142 dB, and 148 dB, respectively. The shunt-damping result at 136 dB was nearly the same as that
measured at 130 dB. The average amplitude reductions of the modes near 235 Hz was about 8 dB, and that
near 320 Hz was about 5 dB. When the OASPL was increased over 136 dB, we noticed that the damping
reduction decreased with the increase of the excitation level for both modes. At the level of 148 dB, the
average amplitude reduction for the modes near 235 Hz was about 5 dB, and that near the 320 Hz was only
2.5 dB. Although the shunt circuits were able to reduce the modes at the OASPL of 148 dB, the reduction
seemed decreased slightly. This prompted us to examine why the shunt-damping efficiency decreased at
high OASPLs.

We reexamined the before-shunting frequency response curves measured at 130 dB, 136 dB, 142 dB
and 148 dB, which are displayed in By examining these curves, we have discovered non-linear
phenomena on the panel structure with the increase of the OASPL. Above 136 dB, the peak frequencies of
the modes shifted toward lower frequency with the increase of the OASPL. The largest shift observed was
about 10 Hz, when the OASPL was increased from 130 dB to 148 dB. It occurred for the 320 Hz mode.
The amplitudes of the modes also changed with the OASPL increase. While most peaks decreased about 1
to 3 dB, the peak near 243 Hz increased about 4 dB during this OASPL increase.

When the OASPL was increased to 154 dB, we discovered that a wire had become disconnected due to
vibration at an adapter joint between the transducer and the connecting wire. Therefore, the experiment
was stopped. After the experiment, we examined the five PZT transducers. They were still intact on the
panel and had survived the severe vibration.
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Although the F-15 panel underwent a wide variation in frequency and amplitude at high OASPLs, the
shunt-damping experiment demonstrated for us that the passive shunting technique was able to control this
kind of structural vibration.

One last note on the passive shunting technique: it should be able to produce better damping results than
those shown above if the shunt inductance and resistance were adjusted after each OASPL increase. One
way of doing this automatically is with the use of shunt circuits implemented with automatic frequency
tracking circuits"”.

4. SUMMARY

We have reported the result of an extended passive piezoelectric shunt-damping experiment for
structural vibration control. The experiment was performed on the same F-15 underbelly panel as we used
earlier''”, but at higher acoustic excitation levels ranging from 130 dB to 148 dB.

Five PZT transducers were used with two shunt circuits designed to control the first and second modes
of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and
resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the
OASPL from 130 to 154 dB in 6-dB steps. During each increment the frequency response functions before
and after shunting were recorded. Good damping reduction was obtained up to the 148dB level. The
experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT
transducers, however, were still bonded well on the panel and survived at this high dB level.

We discovered that the damping reduction decreased slightly with the increase of the acoustic
excitation level over 136 dB. We believe this to be due to non-linear behavior of the panel at the high
levels. The peak frequencies of the modes shifted toward lower frequency with the increase of the OASPL.
The largest shift was about 10 Hz for one mode when the OASPL was increased from 130 dB to 148 dB.
Even with this large shift in frequency, the passive shunting technique was still able to control the panel
vibration. The shunt-damping result could be better if the shunt circuits were designed and implemented
with automatic frequency tracking circuits.
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Figure 1: Frequency response functions of F-15 panel measured at OASPL of 90 dB. (Solid curve: before
shunting; dotted curve: after shunting with a double-mode shunt circuit; dashed curve: after shunting with
two shunt circuits.)

Figure 2: Photograph of the TAFA facility.
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Figure 3: Back view of F-15 panel after being mounted on TAFA plate with specially designed wooden
frame fixture. The insert shows a schematic of the locations of the PZT transducers and test instruments
(A, accelerometer; MIC, microphone).
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Figure 4: Frequency response function between 100 and 400 Hz measured at OASPL of 130 dB before
shunting.
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Figure 5: Frequency response functions before (solid) and after (dashed) shunting using one shunt circuit
with transducer C for modes near 235 Hz; shunt configuration 1.
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Figure 6: Frequency response functions before (solid) and after (dashed) shunting using one shunt circuit
with PZT transducer C for modes near 235 Hz, and another shunt circuit with PZT transducer E for mode
near 320 Hz; shunt configuration 2.
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Figure 7: Frequency response functions before (solid) and after (dashed) shunting using one shunt circuit
with PZT transducers A, B, and C for modes near 235 Hz; shunt configuration 3.
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Figure 8: Frequency response functions before (solid) and after (dashed) shunting using one shunt circuit
with PZT transducers A, B, and C for modes near 235 Hz, and another shunt circuit with PZT transducers
D and E for mode near 320 Hz; shunt configuration 4.
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Figure 9: Frequency response functions before (solid) and after (dashed) shunting measured at OASPL of
136 dB; shunt configuration 4.
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Figure 10: Frequency response functions before (solid) and after (dashed) shunting measured at OASPL of
142 dB; shunt configuration 4.
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Figure 11: Frequency response functions before (solid) and after (dashed) shunting measured at OASPL of
148 dB; shunt configuration 4.

-15

Frequency (Hz)

Figure 12: Before-shunting frequency response functions measured at OASPL of 130 dB, 136 dB, 142 dB
and 148 dB.
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